Home
Journal Information
About
Aims and Scope
Editorial Board
Open Access
Journal Issues
Submission Guidelines
Peer Review
Contact Us
Create Account
Login
Please don't use dangerous characters
Title
Author
Abstract
Keywords
First Name
Last Name
Search
eISSN
:
2717-0616
J Anal Res Clin Med
. 2016;4(2): 104-109. doi:
10.15171/jarcm.2016.017
Original Article
Automatic detection of retinal exudates in fundus images of diabetic retinopathy patients
Mahsa Partovi
1
, Seyed Hossein Rasta
2
* , Alireza Javadzadeh
3
Cited by CrossRef: 23
1- Al-Jarrah M, Shatnawi H. Non-proliferative diabetic retinopathy symptoms detection and classification using neural network.
Journal of Medical Engineering & Technology
. 2017;41(6):498
[Crossref]
2- Vaishnavi J, Ravi S, Anbarasi A. An efficient adaptive histogram based segmentation and extraction model for the classification of severities on diabetic retinopathy.
Multimed Tools Appl
. 2020;79(41-42):30439
[Crossref]
3- Amin J, Sharif M, Yasmin M, Ali H, Fernandes S. A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions.
Journal of Computational Science
. 2017;19:153
[Crossref]
4- Al-Sharfaa A, Yousif A, Al-Saadi E. Localization of Optic Disk and Exudates Detection in Retinal Fundus Images.
J Phys: Conf Ser
. 2021;1804(1):012128
[Crossref]
5- Hamad H, Dwickat T, Tegolo D, Valenti C. Exudates as Landmarks Identified through FCM Clustering in Retinal Images.
Applied Sciences
. 2020;11(1):142
[Crossref]
6- Shankar K, Zhang Y, Liu Y, Wu L, Chen C. Hyperparameter Tuning Deep Learning for Diabetic Retinopathy Fundus Image Classification.
IEEE Access
. 2020;8:118164
[Crossref]
7- Selvachandran G, Quek S, Paramesran R, Ding W, Son L. Developments in the detection of diabetic retinopathy: a state-of-the-art review of computer-aided diagnosis and machine learning methods.
Artif Intell Rev
. 2023;56(2):915
[Crossref]
8- Shankar K, Perumal E, Vidhyavathi R. Deep neural network with moth search optimization algorithm based detection and classification of diabetic retinopathy images.
SN Appl Sci
. 2020;2(4)
[Crossref]
9- Kalyani G, Janakiramaiah B, Karuna A, Prasad L. Diabetic retinopathy detection and classification using capsule networks.
Complex Intell Syst
. 2023;9(3):2651
[Crossref]
10- Shanthi T, Sabeenian R. Modified Alexnet architecture for classification of diabetic retinopathy images.
Computers & Electrical Engineering
. 2019;76:56
[Crossref]
11- Shankar K, Sait A, Gupta D, Lakshmanaprabu S, Khanna A, Pandey H. Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model.
Pattern Recognition Letters
. 2020;133:210
[Crossref]
12- Saeed E, Szymkowski M, Saeed K, Mariak Z. An Approach to Automatic Hard Exudate Detection in Retina Color Images by a Telemedicine System Based on the d-Eye Sensor and Image Processing Algorithms.
Sensors
. 2019;19(3):695
[Crossref]
13- Mohammadi F, Esmaeili M, Javadzadeh A, Tabar H, Rasta S. The computer based method to diabetic retinopathy assessment in retinal images: a review.
Electron J Gen Med
. 2019;16(2):em114
[Crossref]
14- Bhardwaj C, Jain S, Sood M. Automated Diagnostic Hybrid Lesion Detection System for Diabetic Retinopathy Abnormalities.
SWCC
. 2020;10(4):494
[Crossref]
15- Thanikachalam V, G. Kavitha M, Sivamurugan V. Diabetic Retinopathy Diagnosis Using Interval Neutrosophic Segmentation with Deep Learning Model. 2023;44(3):2129
[Crossref]
Submit Your Paper
About
Aims and Scope
Editorial Board
Editorial Policies
Indexing and Abstracting
Archive
Following:
Follow us on:
Editor-in-Chief
Prof. Dr. Samad Shams Vahdati
Editorial Board
Indexing & Abstracting