Logo-jrcm
J Anal Res Clin Med. 2016;4(2): 104-109. doi: 10.15171/jarcm.2016.017

Original Article

Automatic detection of retinal exudates in fundus images of diabetic retinopathy patients

Mahsa Partovi 1, Seyed Hossein Rasta 2 * , Alireza Javadzadeh 3

Cited by CrossRef: 5


1- Shanthi T, Sabeenian R. Modified Alexnet architecture for classification of diabetic retinopathy images. Computers & Electrical Engineering. 2019;76:56 [Crossref]
2- Al-Jarrah M, Shatnawi H. Non-proliferative diabetic retinopathy symptoms detection and classification using neural network. Journal of Medical Engineering & Technology. 2017;41(6):498 [Crossref]
3- Saeed E, Szymkowski M, Saeed K, Mariak Z. An Approach to Automatic Hard Exudate Detection in Retina Color Images by a Telemedicine System Based on the d-Eye Sensor and Image Processing Algorithms. Sensors. 2019;19(3):695 [Crossref]
4- Amin J, Sharif M, Yasmin M, Ali H, Fernandes S. A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. Journal of Computational Science. 2017;19:153 [Crossref]