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Introduction
Driving a vehicle is a complicated process that necessitates 
the coordination of various constituents such as cognitive, 
perceptual, sensory, and motor functions. Disturbance 
in any of these actions can result in irreparable injuries.1 
Traffic accidents are the most common cause of death in 
adolescents and the sixth leading cause of disability in life 
years as stated by the disability-adjusted life year (DALY) 
standard of disability.2,3 Factors such as speeding, alcohol 
and drug consumption, fatigue, and drowsiness while 
driving are the leading causes of traffic accidents.4-6

Drowsiness in driving refers to “the urge to fall asleep” 
while driving, which is due to a biological necessity 
that is permanently created in the physiological state in 
the absence of sleep for a long time and in long-term 
awakenings.7 Fatigue, on the other hand, is demarcated 
as the “disinclination to continue performing the task 

at hand” that results from repetitive and monotonous 
physical work, such as driving long distances.8 Given that 
the consequences of these two modes usually overlap and 
can have similar effects, they have often been considered 
together in different studies.9 

Fatigue and drowsiness while driving are the cause of 
15%-33% of mortality and serious accidents in the United 
States.10 Another study states that this number is about 
20% on average in developed countries.11 The prevalence 
of accidents due to fatigue and drowsiness is higher in 
young adults (especially between the ages of 18 and 24) 
than in older adults.12 This condition can be due to the 
lower tolerance of young adults to sleep deprivation,13 
insufficient maturity of decision-making areas,14 and 
longer reaction time to older drivers,15 which makes 
them more vulnerable during sleep deprivation. Various 
factors such as excessive insomnia, working long shifts 
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Abstract
Introduction: Drowsiness and fatigue during driving is one of the major causes of traffic accidents, 
morbidity, and mortality in societies. Known electroencephalography (EEG) as a gold standard in 
fatigue detection, this study aims to determine the alterations in different brain regions in fatigued 
and drowsy drivers.
Methods: The databases PubMed, Scopus, Web of Science, and Embase have been systematically 
searched for published studies until September 1, 2023. Also, the references of the relevant 
articles have been searched manually. Reporting the quality assessment of the studies has been 
done by the Joanna Briggs Institute (JBI) critical appraisal tool for experimental studies. The study 
purpose was achieved using appropriate statistical methods.
Results: Sixty-five eligible studies consisting of 1450 participants were included. The most 
common age and gender between participants is young males. The majority of the studies were 
held in high-income countries. Simulated car driving studies are utilized frequently in the studies. 
Common brain-wave changes seen in various regions include increased alpha in the occipital 
area (51.7%) and decreased alpha in the frontal region (eight out of eight simulated driving 
studies), decreased beta in the frontal region (25.8% of driving simulated studies), increased 
theta in the frontal region (36.2%), and decreased gamma in the central and temporal areas. 
Delta waves increase throughout the brain in an equal proportion.
Conclusion: The occipital alpha increase, frontal beta decrease, frontal theta increase, and 
central and temporal gamma decrease, are frequent findings among the studies reporting fatigue 
and drowsiness. Based on the discrepancies and inconsistencies reported in EEG results, the 
detection of fatigue and drowsiness in the driving task via EEG data should be done with caution.
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that alter the circadian rhythm, fatigue, sedatives, and 
alcohol consumption during fatigue can induce a feeling 
of drowsiness while driving.16 Previously it is concluded 
that the driver’s fatigue and drowsiness can be assessed 
using physiological signals, e.g., electroencephalography 
(EEG), electrocardiography (ECG), electrooculography 
(EOG), and electromyography (EMG).17

EEG is a technique that records the electrical activity of 
the brain in the form of waves and signals in the form of 
an encephalogram. This is done by placing electrodes on 
the scalp. This method can be used to assess brain activity 
during various activities and diagnose various brain 
disorders.18 Brain EEG waves are classified into five bands 
based on their frequency: delta (0-4 Hz), theta (4-7.5 Hz), 
alpha (7.5-13 Hz), beta (13-30 Hz), and gamma ( > 30 
Hz).19 As a summary of EEG waves, alpha bands tend to 
occur when the eyes are closed and resting. Beta bands, as 
high frequency bands, are usually related to concentration 
and psychological tension. Also, it can increase during the 
feeling of drowsiness. Theta band is a low-frequency band 
that tends to occur transiently during sleep, while the delta 
band commonly occurs in deep sleep. The gamma band is 
a high-frequency band that occurs during consciousness, 
perception, and motor control.20,21

Numerous studies have shown changes in EEG waves 
in drivers due to the state of fatigue and drowsiness. 
However, there is no systematic review to more accurately 
determine the quality of function of different brain regions 
in fatigued and drowsy drivers. This study aimed to assess 
the activity of various brain regions in EEG waves in 
drivers with fatigue and drowsiness as a systematic review 
study. This can evaluate the precision of the change in 
the activity of different areas of the brain in these drivers. 
Given that the prevalence of traffic accidents and the 
number of casualties and serious injuries resulting from 
them is very high, more accurately recognizing and 
assessing the activity of different brain areas in sleepy 
drivers can be a huge stride toward reducing casualties 
and injuries from road accidents in drivers with fatigue 
and drowsiness.

Methods 
This manuscript was written following the PRISMA 
checklist based on the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses 2020 (PRISMA) 
statement.22 The study protocol has been registered in 
PROSPERO. (PROSPERO ID: CRD42022303074)

Search strategy
In this study, the databases PubMed, Scopus, Web 
of Science, and Embase have been systematically 
searched for published studies until September 1st, 
2023, based on the following keywords and strategy 
designed by authors: “accident”, “driving,” “drowsiness,” 
“electroencephalography,” “fatigue,” and “somnolence” 
(Supplementary file 1). In addition, the reference lists 

of relevant articles were inspected to identify potential 
studies meeting the selection criteria.

Inclusion and exclusion criteria
Studies evaluating drowsiness and fatigue during driving, 
and reporting the changes in EEG in different brain regions 
(the measured magnitude, magnitude change, and band 
powers), which are matched with PICO (participants: 
fatigued and drowsy, but healthy drivers (the age more 
than 18 years old), intervention: induced fatigue or 
drowsiness, comparison: alert driving, outcome: reported 
band power alterations) are discussed in this study. Also, 
related peer-reviewed English articles are included.

The studies with any of the following criteria have 
been excluded from this review: 1) case reports, review 
articles, letters, comments, non-English articles, and 
book chapters, 2) studies that do not report the EEG 
band power changes in brain regions, and only describes 
the detection method, 3) survey articles (cross-sectional, 
cohort, and case-control studies).

Reporting quality assessment 
The quality of the included studies was reported using the 
Joanna Briggs Institute (JBI) critical appraisal tools for 
experimental studies, by two authors independently (A.N 
and R.B). All disagreements were resolved by reaching an 
agreement among the parties involved. Due to the nature 
of the studies included, one of the questions regarding the 
time of follow-up is not applicable to this study (question 
no. 6 in Supplementary file 2)

Study selection 
Based on the keywords and the eligibility criteria, the 
following steps were taken by two authors independently: 
1) identifying the titles related to the study concept, 
2) removal of duplicates, 3) screening the titles and 
abstracts of the studies as a result of the primary search, 
4) evaluating the full text of the included studies in the 
earlier step, 5) the final inclusion for data collection. 

Duplicate studies were removed, and the studies that 
met the inclusion criteria of this systematic review were 
included by assessing the title, abstract, and full text using 
bibliographic reference management software, EndNote® 
version 20 by Thomson Reuters, Philadelphia, USA.

Data extraction and outcome definitions 
Two authors, namely A.N and H.S, screened studies based 
on specific inclusion and exclusion criteria. They then 
extracted the data on demographics, interventions, and 
outcomes separately. In case of any disputes, they were 
resolved through consensus. 

Data analysis
We had initially planned to conduct a meta-analysis to 
determine the combined impact of fatigue and drowsiness 
on EEG brain alterations in various brain regions. However, 
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we encountered a challenge as the studies used different 
metrics and parameters to measure EEG alterations, 
such as power spectral density, magnitude changes in 
band powers, and absolute or relative band powers. The 
majority of studies reported qualitative changes in EEG 
band powers as either decreased or increased in specific 
brain regions. Due to this inconsistency, we decided 
against performing the meta-analysis as it would have 
been unreliable.

Results
Study selection
The total result of the systematic search was 6222 studies 
which 2798 were duplicates. After evaluating the study 
full-text based on the eligibility criteria and quality 
assessment of the studies, 443 studies were excluded 
from our study. Finally, 65 studies were included in our 
systematic review study (Figure 1).

Study characteristics
Demographic characteristics
All of the included articles were published between 1987 
and 2023 (median: 2016, IQ3:2019 ). As the classification 
reported by the World Bank classification, approximately 
61.5% of the studies were accomplished in high-income 
countries (HICs). In contrast, 24.5% and 14% of the 

studies are conducted in upper-middle (UMICs) and 
lower-middle-income (LMICs) countries, respectively. 
A total of 1450 participants were included and evaluated 
(with the largest sample size of 72 and the smallest sample 
size of six participants). From the studies reporting the 
genders of participants, 870 of them were men and 236 
were women. Most of the participants’ age was in the 
range of 25-40 years. (Supplementary file 3).

Driving characteristics
Out of the 65 studies analyzed, 56 of them (86%) involved 
simulated driving tasks. Additionally, nine of the studies 
were conducted in an actual driving environment. The 
experiments are divided into real and simulated car 
driving, train driving, and flying. The studies varied in 
terms of the time of day the driving assessments were 
conducted, with some being done in the early afternoon, 
some at midnight, and others at various times throughout 
the day. Of the 65 studies, 21 of them (32.3%) evaluated 
driver fatigue and drowsiness in the early afternoon and 
after lunch, comparing the results with the alert state. The 
duration of the task typically ranged from 60 to 90 minutes 
in most studies. Monotonous driving was the most 
frequent way to induce fatigue and drowsiness in drivers 
(77%), while 15 studies induced fatigue and drowsiness 
through sleep deprivation. Subjective assessment of 

Figure 1. The PRISMA flowchart
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fatigue and drowsiness in the majority of the studies 
(40.6%) was assessed by Karolinska Sleepiness Score 
(KSS). During driving experiments, researchers frequently 
employ simulator-based environments. In some studies, 
researchers evaluate driver fatigue and drowsiness while 
driving in video games or virtual reality based (VR) 
simulators. Most studies that provide details on simulator 
specifications use a single screen to replicate genuine 
driving conditions. In the majority of studies reporting 
driver speed during experiments, the speed range typically 
falls between 60-100 km/h (Supplementary file 3).

EEG data acquisition characteristics
Forty studies (61.5%) out of 65 studies use the 10-20 
international system for placing the electrodes on drivers’ 
heads. The number of channels used in every study ranges 
from 2 to 128 electrodes, although it is more frequent to 
utilize 32-channel and 19-channel EEG (16 of 65 studies) 
during data recording. In the majority of the studies (22 
of 65), the electroencephalographic samples the EEG 
data using a sampling rate of approximately 250 Hz 
(Supplementary file 3).

The effect of fatigued and drowsy driving on EEG signals
As demonstrated in Table 1 the included studies have 
categorized the waves into five bands, known as Delta 
(0.5-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz), Beta (13-40 
Hz), and Gamma ( > 30 Hz). The majority of the studies 
have evaluated the alpha-band alterations in different 
brain regions. 

The majority of the studies (48 out of 65, 73.8%) 
reported an increase in alpha band power in different 
brain regions (in simulated driving experiments, the 
most common in the occipital region (51.7%), following 
the parietal (46.5%) and central regions (46.5%)), and 
eight of 65 (12.3%) studies reported an alpha decrease 
in the different regions (most commonly in the frontal 
region (eight out of eight)) while driving during fatigue 
and drowsiness. During real car driving experiments and 
a train driving study, it was observed that there was an 
increase in the alpha band, often in the parietal (eight out 
of nine) and occipital (seven out of nine) regions. On the 
other hand, in the only real flying aircraft study, there was 
a decrease in the alpha-band in the central and parietal 
regions.

Out of the 65 studies, 20 studies (30.7%) reporting beta 
band power showed a decrease in beta in various brain 
regions during driving with fatigue and drowsiness. On 
the other hand, 11 out of 65 studies (16.9%) reported 
an increase in the beta band, while six out of 65 studies 
(9.2%) had non-significant results for beta. The most 
common brain region for beta decrease during simulated 
driver’s fatigue is the frontal region (15 out of 58 studies, 
25.8%). Also, the number of studies reporting an increase 
in the beta wave for each region is approximately equal.

Among the studies, 36 of them (55.3%) report an 

increase in theta-band activity in different brain regions, 
while six report a decrease in theta-band activity, and 
four of the studies report the theta-band changes as non-
significant. During simulated driving experiments, the 
frontal (21 out of 58, 36.2%) showed the most common 
increase in theta activity. However, in driving conditions 
(based on six studies reporting theta decrease), theta 
activity decreased mostly in central and occipital regions, 
with slight differences in other regions. 

Out of the 65 studies analyzed, 13 studies (20%) have 
found an increase in delta activity in various brain regions 
during driver’s fatigue and drowsiness. On the other hand, 
four studies have reported a decrease in delta activity. In 
the car-simulated driving studies, delta-increased activity 
was detected in almost the same proportion across 
different brain regions. In the real driving environment, 
one car driving study reported an increase in delta activity 
in central, occipital, and parietal regions, while in one real 
train study, a decrease in delta activity in occipital and 
central regions is noted.

Five out of the studies reported a decrease in gamma 
activity in different brain regions (more frequently in 
temporal and central regions). Also, one train-simulated 
study declared an increase in gamma activity in central 
and parietal regions (Supplementary file 4).

The results of the quality reporting assessment
According to the JBI critical appraisal tool (Supplementary 
file 2), the most concerning issue about the quality of 
the studies is not giving the detailed study participants’ 
methodology (i.e., the participants’ characteristics, 
and the acquisition approach that they used to remove 
artifacts). Besides, in the majority of the studies, there is 
not a control defining group.

Discussion
In this study we stated that the majority of the participants 
are young males. HICs and UMICs are the main countries 
conducting the drowsy and fatigued driver experiments 
based on EEG signals. In the most of the studies the task 
duration is ranged between 60-90 minutes, with simulated 
driving experiments mainly in the afternoon. Alpha band 
power, as one of the major indicators of driver drowsiness 
and fatigue, is mainly increased in the occipital region, 
while the decrease in alpha is mostly reported in the 
frontal region. For the beta wave, the decrease in the 
frontal is more frequently reported. The increase in theta 
band power in the frontal and in the delta band in all 
brain regions with an equal proportion is mostly reported 
among the studies. Gamma band decrease is dominantly 
seen in the central and temporal regions.

Based on previous studies, male drivers are more 
likely to be in life-threatening accidents,87 which justifies 
the difference between the number of male and female 
participants in this systematic review. Most of the studies 
included were conducted in HICs and UMICs. This 
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Table 1. EEG alterations in brain regions in the included studies

Study Year Task ROI Changes

Ahn et al23 2016 SD WB α↑ right centroparietal, β↓ frontocentral regions 

Akbar et al24 2017 SD WB α↑

Akbar et al25 2019 SD occipital lobe(O1) α↑

Awais et al26 2017 SD Occipital, parietal, central
Absolute α↑:C3, Cz, O1, O2, P3, P4, P7/ θ↑ in P4, δ↑ 
in P4 and C3. Relative α↑ in O1, O2, P4, P8.

Bose et al27 2019 SD WB

Corresponding frequency bands of the common 
electrodes: AFpz θ/β/ AFp4h α/ CCP5h β/ CCP6h γ/ POz 
θ/β/ PO4 β/ PO7 γ/ O1h β/ Oz δ, α, β, θ/β/ O2h θ/β/ 
PO8 θ/β

Brown et al28 2013 SD Central, parietal, occipital, temporal α↑: C3, C4, P3, P4, POz/ θ↑:C3, C4/

Nguyen et al29 2023 SD

The whole brain evaluates the functional and critical 
connectivity. (FP1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, 
CP5, P7, P3, PZ, PO3, O1, OZ, O2, PO4, P4, P8, CP6, 
CP2, C4, T8, FC6, FC2, F4, F8, AF4, FP2, FZ, and CZ)

θ, δ, α↑ / γ, β↓

Chuang et al30 2018 SD WB α, θ↑, high α power: fatigue-fighting phenomenon

Foong et al31 2019 SD TP9, TP10, Fp1, Fp2 frontal ↑θ, / α, β↓

Gharagozlou 
et al32 2015 SD

O1, O2, P3, P4, P7, P8, OZ, FP1, FP2, CZ, FZ, T7 and 
T8

α↑ in parietal region (esp. p4)

Guo et al33 2016 SD WB α↑ and β↓

Hamann et al34 2023
Simulated 
flying 

WB
Frontal θ↑ (Fz, F3, F4). Parietal α↑ (Pz, P3, P4) / parietal 
β↑(Pz)

Jagannath et al35 2014 SD
frontal (F3, F4), parietal (P3, P4), temporal (T3, T4) and 
occipital (O1, O2)

α↑ (temporal and occipital) and θ↑ (temporal occipital) 
and decrease in β↓ (frontal, temporal, and occipital)/ 
parietal β↑, and α, θ↓: NS

Kar et al36 2010
Real and 
simulated 
driving 

Fp1, Fp2, F3, F4, T3, T4, C3, C4, P3, P4, O1, O2, and 
CZ

α, β ↑

Lal et al37 2002 SD WB
increase in the magnitudes in the entire head. δ and θ 
with 22% and 24%, respectively. α 9% and β 5%.

Lee et al38 2014 SD Fpz-Cz-Pz-OZ
δ↓ in Pz-Oz,
θ + α/beta, and θ + α/α + β ↑in Pz-Oz

Nguyen et al39 2017 SD WB
α↑ (parietal lobes), θ↑, and δ↑ (WB), γ↓ (temporal 
lobe) and β↓ (frontal lobe)

Otmani et al40 2005 SD F3, C3, P3, O1(frontal, parietal, occipital, central) α↑

Pal et al41 2008 SD Oz(occipital) α, θ↑

Pradeep Kumar 
et al42 2021 SD

FP1, FP2, F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, M2, 
M1, T5, P3, PZ, P4, T6, O1 and O2

NM clearly (better detection of drowsiness in O1, T5, F3, 
C4 for α/ F3, F8, O2, T5 for θ)

Puspasari et al43 2023 SD NM exactly
α, β, θ↑ in the sleep-deprived group compared to the 
alert group. When driving monotonously, α, θ↑ (esp. θ) 
and β↓

Puspasari et al44 2017 SD (F3, F4, F7, F8, AF3, and AF4) α, β↓ in the frontal region θ, δ↑ in the frontal region.

Shoaib et al45 2023 SD

PPO9 h, POO9 h, POO1, OI1 h, POO2, OI2 h, POO10 
h, and PPO10 h in the visual cortex and AFF5 h, AFp1, 
AFF1 h, AFp2, AFF2 h, and AFF6 h in the prefrontal 
cortex.

β↓ (other bands were NS)

Sun et al46 2014 SD WB α↓ slightly/ β: stable

Torsvall et al47 1987
Real train 
driving

O2-P4 α, θ↑/ δ↓

Wang et al48 2021 SD
Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3,
FCz, FC4, FT8, T3, C3, CZ, C4, T4, TP7, CP3, CPz, CP4,
TP8, T5, P3, PZ, P4, T6, O1, OZ, O2

δ, θ↑, and α, β↓ (F7, F8, FT7, FCz,
FT8, T3, T4, TP7, CPz, TP8, O1, O2 with more 
betweenness centrality)

Wang et al49 2019
Simulated 
flying 

O1, O2, T7, T8, P3, Pz, P4, C3, Cz, C4, F3, Fz, F4
δ↓ in all regions during microsleep./θ and β: NS/ α↑ in 
all regions during microsleep.

Wei et al50 2018 SD
Fp1, Fp2, F7, F8, A1, and A2 were placed in NHB areas, 
the rest of them in HB areas. (HB: hair-bearing).

θ↓ in central, θ↑ in frontal. α↑ in frontal, central, 
parietal, and occipital. β↑ in parietal, frontal, central, 
and occipital.

Wijesuriya et 
al51 2007 SD F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, Oz, and O2 δ↑ in O2. (not α)

Zhang et al52 2013 SD
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, 
AF4

increase in entropy of α/β and (α + θ)/β in fatigued drivers 
compared to after rest. (after driving avg. of α/β: 0.3854/ 
after rest avg. of α/β:0.3414) (after driving avg. of 
(α + θ)/β:0.5229/ after rest avg. of (α + θ)/β:0.4325)

Zhang et al53 2020 SD
Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, 
Pz, P4, T6, O1, and O2

α↑ in posterior brain regions. (not significant) especially 
in the left hemisphere.
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Study Year Task ROI Changes

Zhang et al54 2021 SD P3, P4, Pz α↑

Zheng et al 55 2017 SD

12-channel EEG signals from the posterior site (CP1, 
CPZ, CP2, P1, PZ, P2, PO3, POZ, PO4, O1, OZ, and 
O2) and 6-channel EEG signals from the temporal site 
(FT7, FT8, T7, T8, TP7, and TP8)

θ, α↑and γ↓ in temporal and parietal areas 

Zuraida et al56 2022 SD WB
θ↓ in temporal and occipital, θ↑ in parietal. β↑ in 
temporal, slightly β↓ in frontal. (θ + α)/(α + β) and (θ / 
α + β): ↓ in temporal.

Åkerstedt et al57 2010 SD Fz-A1, Cz-A2 and Oz–Pz α↑

Ahlström et al58 2017 SD CZ-A2 α, θ↑

Akbar et al59 2015 SD occipital lobe (O1 and O2) α↑ in occipital lobe"

Zuraida et al60 2019 SD frontal and occipital

Morning session: α↑ in frontal and occipital, β↑ in 
occipital, θ↑ in frontal and occipital. (NS in all three 
bands)/ Night session: α↑in occipital, β↑ in frontal and 
occipital, θ↑ significantly in frontal and occipital.

Awais et al61 2014 SD WB α, θ↑ in occipital and parietal regions

Caldwell et al62 2009
Real flying 
aircraft

Cz, Fz, Pz,
laboratory data (between sessions) Fz, Cz, and Pz. δ↑. 
θ↑ (Fz, Pz, Cz). α↓ in Cz and Pz. β: NS. In-flight: α, θ, 
δ↑. Beta was NS.

Campagne et 
al12 2003 SD

F3 (frontal), C3 (central), P3(parietal), and O1 (occipital), 
referenced to A2

α, θ↑

Chen et al63 2018 SD frontal, temporal, central parietal, occipital
δ↑ in central. θ↑ in the frontal and temporal, and θ↓ 
in the occipital. α↑ in central and occipital. β↓ in the 
parietal and occipital.

Zhang et al64 2018 SD
frontal and temporal, two frontals (Fp1, Fp2) and two 
temporals (T3, T4) of the brain

δ↑, θ↓, α↓ 

Craig et al65 2011 SD WB
α, θ↑/ δ: NS Fast-wave activities were increased in the 
frontal area of the brain. β↑

Eoh et al66 2004 SD (Fp1, Fp2, T3, T4, P3, P4, O1, O2) α, θ↑

Filtness et al67 2012 SD C3, C4 α, θ↑

Dunbar et al68 2020 SD NM α, θ↑

Jap et al69 2009 SD WB

significant indices change in temporal site, not 
significant for other regions. NS α↓ and significant β↓ 
activity. θ activity in the parietal, central, and frontal. δ 
activity in frontal.

Kecklund et al70 1993 Real driving CZ-OZ α, θ↑

Lees et al71 2018
Train 
simulated 
driving 

Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, 
T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, 
Pz, P4, P8, O1, Oz, and O2

δ↓(CP3, Oz) and θ↓(F7,F8,P7,FT7,P3,p8,CP3,CPz) in 
drowsiness, α↓(Oz,FP1,CP3,FP1),β↓ (in FT7,FT8,P3,P4) 
and β↑(in TP8), γ↑(FCz,C4,F4)

Lowden et al72 2009 SD Fz-A1, Cz-A2 and Oz-Pz. α↑, θ↑

Otmani et al73 2005 SD F3, C3, P3, O1
α, θ↑ during driving with sleep deprivation, not sleep 
deprivation alone)

Li et al74 2013 Road driving WB γ, β↓ + α↑, θ↑. The ratio of (α + θ)/β ↑

Ma et al75 2018 SD C1, C2, CP1, CP2, P1, and P2 α, θ↑ / β↓

Jap et al76 2010 SD (FP1–FP2, C3–C4, T7–T8, P7–P8, and O1–O2 stable δ, θ activities over time, NS α↓, β↓ (p < 0.05)

Phipps-Nelson 
et al77 2010 SD F3, F4, C3, C4, P3, P4, O1 and O2 θ, δ, α↑

Perrier et al78 2016
 Real driving 
condition

(frontal cluster (Fp1, Fp2, F3, F4, Fz, F8, F7); Central 
cluster (FC3, FC4, C3, C4, Cz, CP3, CP4) and Parieto-
occipital cluster (P3, P4, Pz, P7, P8, O1, O2).

θ↑ until S4 (section 4) and then decreased until 
S6. These differences seemed enhanced after sleep 
deprivation. After sleep deprivation α↑ until S4, and 
then decreases until S6. β: NS

Papadelis et al79 2007 Real driving WB
δ↑: C3, P3, O1, P4, and O2. α↑ in p3. other sites were 
not significant. / β↓ in all bands except in the frontal. 
γ↓ in C3, P3, C4, and P4. θ: NS

Kee et al80 2010 SD F3, F4, C3, C4, O1 and O2 α, β, θ ↑

Simon et al81 2011 Real driving 
frontal (F: 3, 1, z, 2, 4; FC: 3, 1, z, 4), central (C: 3, 1, 2, 
4; CP: 3, 1, z, 2, 4) and parieto-occipital (P: 3, 1, z, 2, 4; 
PO: 3, z, 4; O: 1, z, 2)

α spindle frequency is higher in the parieto-occipital 
region than in the central and frontal regions.

Sivakumar et 
al82 2021 SD

FP1, FP2, F7, F3, FZ, F4, F8, T3, C3, CZ, C4, T4, M2, 
M1, T5, P3, PZ, P4, T6, O1 and O2

FP2, F4, C3, CZ, T4, and PZ in α sub-bands and F3, 
C3, C4, M2, M1, P4, T6, and O1 channels in θ sub-
bands have better accuracy than other channels while 
comparing with different classifiers.

Table 1. Continued.
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may be attributed to the availability of driver simulator 
laboratories in HICs and UMICs, as most of the studies 
included are simulated driving studies. On the other 
hand, according to the latest report of the World Health 
Organization, approximately 93% of mortalities caused by 
road accidents occurred in LICs and LMICs.88 Therefore, 
there should be adequate support in LMICs and LICs to 
provide simulated and real driving environments. 

As stated in previous studies,89 in the first 90’ of driving, 
the fatigue accumulation in young participants is lower 
than in older drivers, also this study suggests that the 
optimal driving task duration is 60´-75´ minutes and 105´-
120´ minutes for the old and younger groups, respectively. 
Unlikely, in most of the included studies, the driving task 
duration is between 60´-90´. Thus, there should be more 
driving tasks with prolonged task time which can induce 
fatigue during experiments in drivers. Additionally, most 
of the experiments were conducted in the early afternoon 
after launch. Previously several studies concluded that the 
circadian rhythm has a crucial role in inducing fatigue 
in the afternoon,90-92 especially the time between 2 pm-4 
pm. Also, the time between 2 am and 5 am has the same 
effect by decreasing the circadian rhythms. KSS and 
Stanford Sleepiness Scale (SSS) are the two most frequent 
questionnaires used in the detection of subjective fatigue 
and drowsiness in the included studies. Although the two 
mentioned questionnaires are beneficial in the detection 
of sleepiness, there should be objective driver fatigue tools 
combined with subjective measurements to evaluate the 
driver fatigue every time during the driving experiment 
as in the beginning and at the end of the driving session.

The majority of the studies included in the review 
utilized mid-level and high-level simulator-based driving 
environments. While simulation-based assessments of 
driver performance can yield similar results to real-world 
driving environments,93 the differences between the 
two cannot be ignored. Therefore, more actual driving 
experiments should be conducted to evaluate the findings 
in brain regions with more precision. 

There are discrepancies in EEG data of fatigued and 

drowsy drivers. Studies have shown that most of the 
driving experiments result in increased alpha band power 
in different brain regions, with the occipital region being 
the most common, followed by the parietal and central 
regions. the increase in the alpha wave in this region may 
be attributed to repeated eye closing and also a decrease in 
vigilance during the driving task with fatigue.26 However, 
in some cases, the alpha band power decreases, most 
commonly in the frontal region. As reported in numerous 
studies, the alpha band decrease may be caused by the 
motivation of the driver to sleep because of fatigue, or it 
occurs gradually during sleep onset.94,95 Real car and train 
driving experiments show that there is an increase in the 
alpha band power, primarily in the occipital and parietal 
regions. On the other hand, during real-flying aircraft 
studies, a decrease in the alpha-band is observed in the 
central and parietal regions. 

The frontal region was the most common brain region 
where beta decreased during simulated car driver’s 
fatigue. The reason for this can be the decrease in 
concentration, and worsening of the driver’s performance 
in the attentional processes like driving.96 Interestingly, 
the number of studies reporting an increase in the beta 
wave for each region was approximately the same. The 
increase in beta wave in fatigue and drowsiness driving 
could be because of the slowed motor activity in the 
drivers,65 or because of increased mental activity known 
as arousal theory.97

Due to the theta band’s tendency to occur during 
the early stages of sleep, most studies have reported an 
increase in this EEG band specifically in the frontal and 
occipital regions, which can induce sleepiness in fatigued 
and drowsy individuals. For the delta band, fewer studies 
have concluded an increase in various brain regions with 
the same proportion. However, the decrease in the theta 
and delta bands can be attributed to the driver’s trying to 
reimburse for fatigue.71,98

For the gamma band, the majority of the studies agreed 
with the decrease in gamma in the temporal and central 
regions. One simulated train study stated a gamma 

Study Year Task ROI Changes

Zhao et al83 2012
SD + oddball 
task

WB
θ↓ in frontal, central, and occipital. α↑in parietal 
occipital, central, and temporal. β↓in frontal, central, 
and temporal. δ: NS

Han et al84 2019 SD

Pre-frontal Fp1, Fpz, Fp2, AF3, AF4
Frontal F7, F5, F3, F1, Fz, F2, F4, F6, F8
Frontal-central FC5, FC3, FC1, FCz, FC2, FC4, FC6
Central C5, C3, C1, Cz, C2, C4, C6
Central-parietal CP5, CP3, CP1, CPz, CP2, CP4, CP6
Parietal P7, P5, P3, P1, Pz, P2, P4, P6, P8
Parietal-occipital PO7, PO5, PO3, POz, PO4, PO6, PO8 
Occipital O1, Oz, O2
Temporal FT7, FT8, T7, T8, TP7, TP8"

α, θ, δ↑ β: NS

Gibbings et al85 2022 SD
Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, 
P4, P8, O1, O2, M1, M2

α↑ in sleep restricted. (δ: FP2, F8: θ, FP1: α, /β: NS)

Zheng et al 86 2022 SD WB
δ↓ in frontal (FC1 and F4) and parietal (P7)/not 
mentioned other waves)

WB: Whole Brain; NM: not-mentioned; SD: Simulated Driving; VR: Virtual reality; NS: not significant; ↓: decrease, ↑: increase.

Table 1. Continued.
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decrease during driver fatigue.71 Previous studies conclude 
that in muscle fatigue, the gamma band could be increased 
ipsilateral and contralaterally, especially in the central 
region, which is consistent with the mentioned study.99

Although this study tries to be a valuable resource 
for researchers and decision-makers, it is important to 
note that some limitations to this study should be taken 
into account. One limitation is not being able to meta-
analysis statistical variables due to their variant way of 
reporting the outcomes. The other limitation of this study 
is the lack of control groups with larger sample sizes in 
the experiment. This study suggests that future research 
should consider detailed demographic eligibility criteria in 
experiments, in simulated and real driving environments 
with larger sample sizes in LMICs and LICs, and with a 
longer time duration. Also, the fatigue or alertness of the 
drivers should be evaluated by combining the subjective 
and objective sleepiness assessment tools.

Conclusion
In conclusion, the study highlights the importance of 
conducting more driving experiments to evaluate regional 
changes accurately. The occipital alpha increase, frontal 
beta decrease, frontal theta increase, and central and 
temporal gamma decrease, are frequent findings among 
the studies reporting fatigue and drowsiness. Differences 
in wave alterations could be due to individual variations 
or physiological causes, which can be better understood 
through studies with precise eligibility criteria and larger 
sample sizes. Additionally, while EEG is considered the 
gold standard for detecting fatigue and drowsiness, using 
EEG data to determine fatigue and drowsiness during 
driving should be cautiously approached.
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