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Introduction
Road Traffic Injuries (RTIs) are one of the most important 
threats to human life and are considered a public health 
problem worldwide. RTIs are the eighth-leading cause 
of death and are predicted to rise to become the fifth-
leading cause of worldwide death by 2030. According to 
the Global Status Report on Road Safety (GSRRS) in 2018, 
disseminated by the World Health Organization (WHO), 
there was an annual death toll of 1.35 million and 20 to 
50 million non-fatal injuries around the world.1 A high 
burden of road traffic deaths and injuries occur in low-
and middle -income countries (LMICs).1 The Eastern 
Mediterranean Region (EMR) has the second-highest 
traffic-related death rate in the world.1 Iran has one of 

highest rates of RTIs in EMR, which has had severe effects 
on public health.2,3 RTIs are one of the most important 
causes of death in Iran, accounting for the second-leading 
cause of death.4,5

Road traffic accidents are avoidable and preventable.6 
The availability of detailed RTIs data enables us to 
make future predictions and plan effective prevention 
strategies to tackle the problem. It is therefore of the 
greatest importance to predict RTIs to understand the 
pattern of the issue and identify the contributing factors 
to achieve the goals of preventing road traffic crashes and 
minimizing associated injuries. There are several ways 
to predict road traffic crashes. In the 80s and early 90s, 
statistical methods such as linear regression models were 
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Abstract
Introduction: Road traffic injuries (RTIs) are one of the most important public health problems 
and causes of mortality worldwide, and especially in Iran.
Methods: We used data from 2017-03-19 to 2021-03-20 registered in RTIs by the East Azerbaijan 
forensic medicine organization database. Information on predictor variables was obtained from 
traffic monitoring cameras’ data. We developed eight machine learning prediction models: 
logistic regression (LR), elastic net regression, decision tree (DT), random forest (RF), extreme 
gradient boosting (EGB), support vector machines (SVM; linear and non-linear), and artificial 
neural networks (ANNs). We used RF to evaluate the importance of each predictor in the 
prediction of death. 
Results: The mean number of classes 1, 2, and 4 vehicles on the road on days when death 
occurred was significantly higher than on days without death and there was an opposite significant 
pattern for vehicle types 3 and 5. Similar to the training data, RF provided the highest prediction 
accuracy with an AUC of 91% (95% CI:88%-93%) in the testing data. The total number of type 
2 vehicles on the roads is by far the most important and relevant predictor variable (variable 
importance:83.95) followed by the number of instances of unsafe distance while driving (58.50). 
The number of Class 4 vehicles (56.58%) and average speed of vehicles (56.31%) were the next 
most important variables.
Conclusion: Using the RF machine learning algorithm, the occurrence of death in accidents can 
be predicted with very high accuracy using the number of class 2 vehicles on roads.
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first used for the prediction of road crashes.7 Machine 
learning (ML) approaches have gained great interest in 
recent years.8

ML, highlighted as one of the most important advances 
of the 20th century has rapidly been used in a wide range 
of disciplines, including cancer prediction, cardiovascular 
diagnostics, image analysis,9-11 and in the prediction of 
road traffic crashes and death occurrence.12-16 ML refers 
to different computational approaches to teach computers 
to understand patterns from existing data and use such 
information to make future predictions.17 The main 
advantage of ML methods over other methods such as 
linear regression is that such approaches can relax the 
assumptions that are necessary for traditional regression 
models regarding multi-collinearity, additivity, and 
distribution.18

ML can employ multiple types of learning algorithms, 
of which logistic regression (LR), elastic net logistic 
regression (ENLR), decision trees (DT), random forests 
(RF), extreme gradient boosting (XGB), (linear and non-
linear) support vector machines (SVM), and artificial 
neural networks (ANNs) are commonly used in medical 
disciplines.19 ENLR is a hybrid of ridge regression and 
LASSO regularization. Like the LASSO, ENLR can generate 
reduced models by generating zero-valued coefficients. 
Empirical studies have suggested that the Elastic Net 
technique can outperform LASSO on data with highly 
correlated predictors.20 DTs are the most straightforward 
algorithms that provides a visual representation of the 
relationship between the predictors and outcome variables. 
However, the variability in the DTs can, in some cases, 
can be improved by using XGB and RF, which aggregate 
the results of randomly generated DTs to produce a more 
effective model.21 SVMs are a set of supervised learning 
methods used for classification, regression, and outlier 
detection. SVMs are discriminative classifier that can be 
defined by separating linear or nonlinear hyperplanes 
which distinguish different classes.18 ANNs have been 
broadly used in medical studies.22 Such models perform 
well when there are complex and non-linear associations 
between variables.23 

As discussed earlier, Iran has one of the highest rates of 
RTIs in EMR, which has severe effects on public health. 
This study aims to use ML algorithms to first understand 
the main causes of the deaths in accidents and second, to 
predict the occurrence of death in road accidents. This 
will be beneficial to the whole population and society in 
terms of safety, hospital proper resources allocation in the 
EMS. 

Methods
Data and Population
The current cross-sectional study was conducted by the 
Declaration of Helsinki in East Azerbaijan province, Iran 
(which is situated in the northwestern part of the country 
with an area of approximately 47 830 km² and around 

4 000 000 inhabitants in 2022). We used data from 2017-
03-19 to 2021-03-20 that registered in the RTIs by the 
East Azerbaijan Forensic Medicine Organization database 
(EAFMOD). Its injury records are mainly provided by 
police and hospital sources, and the death occurrence 
(outcome variable) was recorded (according to the WHO 
definition: deaths occurring within thirty days after 
RTIs are considered as traffic deaths) in the same day. 
Information on predictor variables was obtained from the 
Traffic Monitoring Cameras Data (TMCD).24 The Vehicle 
Tracking System is used to register the number of vehicles 
passing through each road, their speed, and violations. 
The main definition of an accident in this study is: any 
accident involving at least one road vehicle in motion on 
a public road or private road to which the public has the 
right of access, resulting in at least one injured or killed 
person. The total number of accident days was 1491. After 
applying the exclusion criteria (injuries that occurred in 
other provinces or deaths occurred after the 30th day), 
these cases were omitted from the data. The predictor 
variables in the current study are duration of surveillance 
cameras (min), total number of vehicles on the road (by 
class), the average of their speed and violations (km/h), 
number of illegal overtaking incidents, unsafe distance 
while driving, and total number of speeding violations. 
Vehicle Tracking System classifies the vehicles into five 
classes; Class 1: light duty, which includes passenger cars, 
light-duty pickup trucks, minivans, or vehicles with 4 
tires only; Class 2: medium duty, which includes flatbed 
trucks, box trucks, extended bed cargo, small buses, and 
conversion vans; Class 3: three-axle single-unit trucks; 
Class 4: Buses; Class 5: heavy duty includes trailer or four 
or more Axle Single-Unit Trucks. Details of data collection 
have been published elsewhere.25 Also, in accordance with 
ethical standards, each subject in the project signed a 
detailed informed consent form.

Statistical Analysis
The quantitative variables were summarized as mean 
(SD) and median [min, max]. The qualitative variables 
were reported as number and percentage (%). A two 
independent sample t-test was used for the comparison 
between the two groups (death vs non-death), at a 0.05 
level of significance. The Pearson correlation analysis 
was used to verify the association between the predictor 
variables. 

Machine Learning Methodology
To develop ML prediction models, we followed the 
“Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis: the TRIPOD 
statement” for preparing, developing, and validating the 
statistical analysis and prediction models.26 Following 
that, in this study, we applied LR, ENLR, DTs, RFs, XGB, 
SVMs (linear and non-linear), and ANNs to predict death 
occurrence at the in road accident. 
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Handling Class Imbalance
Prediction algorithms typically tend to predict the majority 
class, resulting in incorrect sensitivities and specificities.27 
Instead, addressing the imbalance in the outcomes (i.e., 
lower rates of one class) in the training data typically 
results in the development of a superior prediction model 
and a better trade-off between sensitivity and specificity. 
The most common technique to overcome imbalanced 
outcomes is oversampling the minority class and under-
sampling the majority class.28 We use the random 
oversampling method, which was shown to be efficient in 
terms of speed and produced the most accurate results.29 

Model Selection and Evaluation 
We divided the data into two portions: 2/3 of the data 
was used for model building or training, while the 
remaining 1/3 of the data was used to test the model or 
validate it. For each of the ML algorithms, we used ten-
fold cross-validation in the balanced training data to find 
the optimal model that produces the highest area under 
the receiver operator characteristic curve (AUC) in the 
training set. We assessed the model’s performance in the 
validation data in terms of some indices such as sensitivity, 
specificity, positive predictive value, negative predictive 
value, and AUC.30

We used R software (version 3.5.2) and the caret31 package 
to perform the ML algorithms. For variable selection 
in ML models, we used the RF variable importance 
measure to obtain the contribution of each variable in 
the occurrence of death. The higher the importance, the 
more predictive power in the model.32 We used the pROC 
package to develop the ROC curves.33 

Results
Univariate Analysis
We examined 1491 days with TMCD (Traffic Monitoring 
Camera Data) information. Death occurred in 1227 (82%) 

days. Table 1 shows a comparison of the death and non-
death days based on the camera information. The mean 
and median of the duration of surveillance cameras (min) 
differed between death and non-death days. We observed 
that the mean and median number of class 1 vehicles on 
the road for the days that death occurred was significantly 
higher than those days without death (mean: 559000 vs 
521000). The same pattern was observed for type 2 (mean: 
42300 vs 30300) and 4 (mean: 11800 vs 10400) vehicles. 
However, significantly opposite trends were observed for 
vehicle type 3 (mean: 22200 vs 24400) and type 5 (mean: 
26600 vs 28100). Another significant difference between 
death and non-death days were the number of illegal 
overtaking (per day) vehicles (median difference: 1130 
and mean difference: 1010). Refer to Table 1 for more 
comparisons.

Training Models and Results
We trained all machine algorithms on the balanced 
training data set using the SMOTE procedure (1757/1665 
(1.05). The results are given in (Table 2, Figure 1).

 The RF algorithm had the highest performance in terms 
of the minimum (0.90), maximum (0.94) and quartiles 
(0.92, 0.93, and 0.93) of the AUC followed by the XGB: 
minimum (0.83), maximum (0.90) and quartiles (0.85, 
0.89, and 0.90. In terms of the average AUCs, ENLR (0.81) 
and LR (0.80) had better performance compared to the 
DTs (0.76) and ANNs (0.75). 

Testing Models and Results
The validation data included 803 occurrences of which 651 
(0.81%) were deaths. Table 3 shows performance measures 
(such as sensitivity, specificity, positive predictive value, 
negative predictive value) of RF model on the testing data. 
Like the training data, RF had the highest AUC 
(Figure 2: (AUC: 0.91; 95% CI: 0.88-0.93), sensitivity: 0.53 
and specificity: 0.97 (Table 3).

Figure 1. Performance of the prediction models in the training data by SMOTE (DT: decision tree, ANN: artificial neural network, SVML: linear support vector 
machine learning, LR: logistic regression, ENLR: Elastics net logistic regression, SVMNL: non- linear support vector machine learning, XGB: extreme gradient 
Boosting, RF: random forest)
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The model’s accuracy was 0.88, which is considered 
excellent. The higher the accuracy, the better the 
performance of the model at distinguishing between the 
positive and negative classes. 

The variable importance using RF is given in 
Table 4 and Figure 3. The total number of type 2 vehicles 
on the roads was the most important predictor variable 
(overall importance: 83.95), followed by unsafe driving 
distances (58.50). 

The number of class 4 vehicles (56.58%) and average 
vehicle speed (56.31%) were the next most important 
variables. 

Furthermore, a heatmap plot was employed to identify 
patterns and correlations among predictor variables 
(Figure 4). This plot depicted values for Pearson 

correlation across two axes variables as a grid of colored 
squares. Darker colors indicate stronger correlations, 
while lighter colors indicate weaker correlations. Positive 
correlations (when one variable increases, the other 
variable tends to increase) are represented by warm colors 
(red). Negative correlations (when one variable increases, 
the other variable tends to decrease) are represented by 
cool color (blue). Statistically non-significant correlations 
are displayed as empty cells. 

The XGB had the second highest AUC (0.83; 95% CI: 
0.79-0.87). The other models provided lower AUCs (the 
results are not reported here). 

Discussion
Fatalities in road accidents are a serious issue in Iran. 

Table 1. Comparison of the death and non-death days based on the camera information

Variables Death (n = 1227) Non-Death (n = 264) P value* Overall (N = 1491)

Duration of surveillance cameras (min)

Mean (SD) 112000 (8700) 111000 (6780) 0.0013 112000 (8390)

Median [Min, Max] 114000 [2880, 123000] 112000 [64000, 121000] 114000 [2880, 123000]

Number of vehicles on the road (per day)

Mean (SD) 662000 (130000) 614000 (122000)  < 0.001 652000 (130000)

Median [Min, Max] 664000 [1500, 1070000] 643000 [117000, 930000] 657000 [1500, 1070000]

Number of class 1 vehicles on the road

Mean (SD) 559000 (119000) 521000 (112000)  < 0.001 551000 (119000)

Median [Min, Max] 555000 [1320,963000] 538000 [101000,805000] 552000 [1320, 963000]

Number of class 2 vehicles on the road

Mean (SD) 42300 (14000) 30300 (12400)  < 0.001 40000 (14500)

Median [Min, Max] 42200 [89.0, 73600] 27900 [3310, 77500] 39100 [89.0, 77500]

Number of class 3 vehicles on the road

Mean (SD) 22200 (5820) 24400 (6120)  < 0.001 22600 (5940)

Median [Min, Max] 22400 [49.0, 37200] 25200 [2350, 34700] 22700 [49.0, 37200]

Number of class 4 vehicles on the road

Mean (SD) 11800 (2920) 10400 (2690)  < 0.001 11600 (2940)

Median [Min, Max] 12000 [29.0, 19700] 10500 [739, 19700] 11600 [29.0, 19700]

Number of class 5 vehicles on the road

Mean (SD) 26600 (6460) 28100 (6410)  < 0.001 26900 (6480)

Median [Min, Max] 27200 [17.0, 43500] 29400 [2970, 40500] 27500 [17.0, 43500]

Average speed of vehicles (km/h)

Mean (SD) 77.1 (2.82) 78.5 (2.21)  < 0.001 77.4 (2.76)

Median [Min, Max] 77.6 [60.5, 85.0] 78.9 [63.5, 84.1] 78.0 [60.5, 85.0]

Number of speeding violations

Mean (SD) 42600 (20600) 41600 (16100) 0.272 42400 (19800)

Median [Min, Max] 37500 [286, 105000] 40400 [3520, 98400] 38600 [286, 105000]

Number of unsafe distance while driving

Mean (SD) 113000 (34500) 115000 (36000) 0.101 113000 (34800)

Median [Min, Max] 110000 [195, 230000] 121000 [8130, 238000] 112000 [195, 238000]

Number of illegal overtaking (per day)

Mean (SD) 3950 (2350) 2940 (1460)  < 0.001 3750 (2240)

Median [Min, Max] 3910 [0, 21100] 2780 [53.0, 14100] 3590 [0, 21100]
* Based on independent sample t-test.
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Predicting the occurrence of road traffic deaths and 
identifying the contributing factors enable experts, 
authorities, and researchers to understand the extent 
of the issue and speed up the decision-making to tackle 
it. In current study, we used several state of the art ML 
algorithms to predict the occurrence of death in East 
Azerbaijan province road accidents based on data from 
traffic monitoring cameras. The findings of this study, 
which used eight models of LR, ENLR, DTs, RFs, XGB, 
(linear and non-linear) SVM, and ANNs to determine the 
most effective prediction model for occurrence of road 
traffic deaths and to explore the importance factors. It was 
observed that the RF model outperformed the other ML 

algorithms followed by the XGB method. Based on the 
performance measures, it was shown that the RF model 
has greater value in sensitivity, specificity, and accuracy 
in predicting deaths compared to other ML approaches. 
RF is a supervised classification algorithm that was 
first proposed by Leo Breiman and Adele Cutler. In RF, 
sampling is done randomly with replacement, and training 
progress by combining multiple DTs.34 There are several 
studies that have applied the RF along with the other 
methods to predict the road traffic crashes and related 
injuries.12,35,36 The findings of a study that used three 
models of LR, Classification and Regression Tree (CART), 
and RF to determine the most effective prediction model 

Table 2. Comparison of machine learning models in the balanced training data by SMOTE

RF DT ANN SVML SVMNL LR ENLR XGB

ROC.Min.1 0.90 0.64 0.50 0.73 0.65 0.74 0.74 0.83

ROC.1st.Qu.2 0.92 0.72 0.74 0.77 0.78 0.78 0.80 0.85

ROC.Median3 0.93 0.76 0.77 0.79 0.82 0.81 0.82 0.86

ROC.Mean4 0.92 0.76 0.75 0.78 0.80 0.80 0.81 0.87

ROC.3rd.Qu.5 0.93 0.81 0.79 0.80 0.84 0.83 0.82 0.89

ROC.Max.6 0.94 0.86 0.85 0.82 0.87 0.85 0.83 0.90

Sens.Min.7 0.39 0.16 0.00 0.00 0.30 0.29 0.22 0.39

Sens.1st.Qu.8 0.47 0.32 0.17 0.02 0.41 0.30 0.26 0.54

Sens.Median9 0.52 0.35 0.49 0.12 0.50 0.36 0.30 0.54

Sens.Mean10 0.53 0.36 0.38 0.13 0.48 0.38 0.30 0.54

Sens.3rd.Qu.11 0.57 0.41 0.55 0.23 0.52 0.45 0.34 0.58

Sens.Max.12 0.70 0.49 0.66 0.30 0.68 0.57 0.38 0.66

Spec.Min.13 0.97 0.94 0.87 0.98 0.95 0.93 0.95 0.96

Spec.1st.Qu.14 0.98 0.97 0.92 0.99 0.97 0.97 0.97 0.97

Spec.Median15 0.99 0.97 0.95 1.00 0.98 0.97 0.98 0.97

Spec.Mean16 0.99 0.98 0.95 0.99 0.97 0.97 0.98 0.98

Spec.3rd.Qu.17 0.99 0.99 0.98 1.00 0.98 0.99 0.99 0.98

Spec.Max.18 0.99 1.00 1.00 1.00 0.99 0.99 1.00 0.99

1Minimum value of Receiver operating characteristic curve, 2First quantile value of Receiver operating characteristic curve, 3Median value of Receiver operating 
characteristic curve, 4Mean value of Receiver operating characteristic curve, 5Third quantile value of Receiver operating characteristic curve, 6Maximim value of 
Receiver operating characteristic curve, 7Minimum value of sensitivity, 8First quantile value of sensitivity, 9Median value of sensitivity, 10Mean value of sensitivity, 
11Third quantile value of sensitivity, 12Maximum value of sensitivity, 13Minimum value of specificity, 14First quantile value of specificity, 15Median value of specificity, 
16Mean value of specificity, 17Third quantile value of specificity, 18Maximum value of specificity.

Table 3. Performance measure of random forest model in testing data

Measures Values

Sensitivity 0.53

Specificity 0.97

Positive predictive value 0.79

Negative predictive value 0.90

Precision 0.79

Accuracy 0.88

Kappa 0.56

Prevalence 0.19

Detection rate 0.10

Detection prevalence 0.13

Balanced accuracy 0.75

Table 4. Variable importance by random forest model

Variables Overall importance

Number of class 2 vehicles 83.95

Number of unsafe distance while driving 58.50

Number of class 4 vehicles 56.58

Average speed of vehicles (km/h) 56.31

Number of illegal overtaking 54.98

Number of the total vehicles on the road 50.50

Number of class 1 vehicles 49.58

Duration of surveillance cameras (min) 47.77

Number of speeding violations 47.30

Number of class 3 vehicles 45.05

Number of class 5 vehicles 43.72
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for road traffic severity injury and exploring the correlated 
factors, showed that the RF is the most efficient tool.35 In 
another study, tree-based ensemble models including RF, 
AdaBoost, Extra Tree, and Gradient Boosting, and an 
ensemble of two statistical models including LR stochastic 
gradient descent, were compared for the prediction of 
road accident severity. The results of this study showed 
the RF as the best performing model.37 One reason that 
makes RF as a superior model, is that the RF can handle 
the correlated predictor variables, non-linear interactions 
and structures which goes beyond the capabilities of the 
statistical models.21

On the other hand, exploring the important factors 
associated with deaths in road accidents is one of the 
main interests among researchers. In the current study, 
the variables of “number of Class 2 vehicles”, “number 
of unsafe distance while driving”, “number of Class 4 
vehicles”, and “average speed of vehicles” were identified as 
important variables. The number of vehicles determines 
the level of traffic congestion. Traffic congestion and its 
association with road safety is an important issue that 

is an ongoing debate among some transport planners 
and policy makers. Some believe that the increased level 
of traffic congestion leads to a decrease in the average 
traffic speed and this situation aids road safety. On the 
other hand, there are some other factors such as traffic 
flow, driver characteristics, road geometry, and vehicle 
type that affect road traffic crash occurrence and related 
injuries.38,39 The results of a study showed that increased 
the number of vehicles and traffic congestion does not 
affect the severity of road crashes.38 

Speeding is violation is one of key risk factors in RTIs. 
The speed management decreases the number of fatalities, 
serious injuries, and death in traveling vehicles.1 The 
existence of a national speed limit law and speed limits 
not exceeding 50 km/h in the urban area are the best 
practices criteria that can help reduce the RTIs. In Iran, 
there is a speed limit low of 60 Km/h in urban area which 
is higher than the speed limit introduced by WHO and 
the enforcement of that is not satisfactory.1 The results 
of a study showed that driving offenses such as illegal 
overtaking, which is recognized as an important factor in 
the current study, vary according to temporal effects such 
as time of day and day of the week.40

Limitations 
The results of this study strongly depend on the accuracy 
of the data collection tool, such as the TMCD accuracy. 
Although, the validity and confidence level of the tools has 
not been evaluated yet by the national experts in the Forensic 
Medicine Organization, However, a recently published 
research protocol provides more details on the reliability of 
the data collection methods used in this paper.25 Also, due 
to the legal restrictions in the Iran, death during transfer 

Figure 2. Area under the curve for all prediction models in the testing data 
(DT: decision tree, ANN: artificial neural network, SVML: linear support 
vector machine learning, LR: logistic regression, ENLR: Elastics net logistic 
regression, SVMNL: non- linear support vector machine learning, XGB: 
extreme gradient Boosting, RF: random forest)

Figure 4. Heatmap of the predictor variables. Darker colors indicate stronger 
correlations, while lighter colors indicate weaker correlations. Positive 
correlations (when one variable increases, the other variable tends to 
increase) are represented by warm color (red). Negative correlations (when 
one variable increases, the other variable tends to decrease) are represented 
by cool color (blue)

Figure 3. Variable Importance by random forest for the prediction of the 
occurrence of death
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due to RTIs as well as deaths at the scene of accident have 
no meaning and are called hospital death. Nonetheless, 
the prediction power of our model was high enough (91% 
AUC) for practical use. But we still suggest further study 
to consider age, stage, and other unrecognized factors 
associated with death that has not included in the current 
paper. Also, we restricted our analysis to death variable, and 
we did not evaluate the severity of injuries for non-death 
cases. Thus, we suggested other studies to include multiple 
categories in the prediction models rather than just death 
and non-death. 

Conclusion
Using the RF machine learning algorithm, the occurrence 
of death in accidents can be predicted with very high 
accuracy using the number of class 2 vehicles, number of 
unsafe distance while driving, number of class 4 vehicles, 
and average speed of vehicles.
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