Prediction of mortality in sepsis with biomarkers and qSOFA score combination: An observational study in a tertiary care centre of western India

Puneet Rijhwani1, Srishti S. Jain2, Pallaavi Goel1*

1Department of General Medicine, Mahatma Gandhi University of Medical Science & Technology, Jaipur, India
2Critical Care Department, Mahatma Gandhi University of Medical Science & Technology, Jaipur, India

Introduction

Any lethal organ malfunction due to an unsynchronized response of the host is called sepsis.1,2 It is the foremost reason of bereavement among those who are critically ill, with a total mortality of 30%.3,4

Septic shock and sepsis impair the host’s ability to control any infection, which can result in organ failure (also known as “multiorgan dysfunction”) and eventual death. Since the early 1990s, there have been numerous adjustments made to the definition of sepsis.3 The term “systemic inflammatory response syndrome” (SIRS), which develops as a reaction to any pathogenic cause, was coined by the International Consensus Panel in 1992 to describe sepsis. The term “severe sepsis” was suggested by the panel to describe situations in which organ failure and sepsis coexist. The term “septic shock” refers to sepsis that has been worsen by either hypotension that is resistant to fluid therapy or high serum lactic acid levels.6 A second consensus panel described the symptoms of SIRS in 2001 as tachycardia or bradycardia, fever or hypothermia; and an increased or decreased total leucocyte counts. Since SIRS is no longer usually caused by an infection, it is no longer included in the definition of sepsis. The definitions of sepsis and septic shock have been updated by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. A subdivision of sepsis in which circulatory, cellular, and metabolic abnormalities are associated with a higher risk of mortality than sepsis alone, is how septic shock is characterized now. The clinical criterion of hypotension requiring vasopressor therapy to maintain mean blood pressure of 65 mm Hg or above and having a serum lactate level of more than 2 mmol/L following satisfactory fluid resuscitation can be used to classify patients as having septic shock.7 Sepsis is typically diagnosed at the patient’s bedside based on symptoms and indications of organ failure as well as clinical suspicion of an underlying infection. The diagnosis of sepsis is also aided by laboratory, radiographic, physiological,
and microbiologic factors. Though it is possible to have sterile cultures and still have sepsis, which is typically true, antibiotics are only partially administered before culture samples are collected. Sepsis cannot be accurately diagnosed with any gold standard technique, and there is no reliable system to forecast consequences. Numerous scores have been developed for use in sepsis. Sequential organ failure assessment (SOFA) and fast sequential organ failure assessment (qSOFA) scores were employed in this investigation.

SOFA score is calculated as follows (Table 1):

The maximum score is 24 points, a score more than 16 depicts 90% mortality.

qSOFA is a shorter and quicker version of SOFA, it is calculated as follows (Table 2):

The maximum score is 3 points which suggests high risk of poor outcome.

In any clinical set up, the laboratory biomarkers are of analytical and predictive importance and can serve in determining the suitable management course. There are more than 100 such laboratory biomarkers that have been suggested to be useful for sepsis diagnosis and prognostication. One of these biomarkers, serum lactate, has been associated with 28-day mortality in sepsis and septic shock patients. Even procalcitonin (PCT) has been a very useful biomarker in diagnosing sepsis. C-reactive protein (CRP) is an acute phase reactant and a sensitive marker of sepsis. In this study, we hypothesised that qSOFA score and a combination of biomarkers rather than individuals would be more effective at predicting 28-day death in patients with sepsis.

Methods
A prospective hospital-based observational study was conducted in the Department of General Medicine at a tertiary care centre in Jaipur, Rajasthan (western India) over a period of 15 months.

Patients who were admitted in intensive care unit (ICU) and diagnosed as sepsis, underwent a detailed medical history and a thorough physical examination followed by blood investigations. Institute Ethics Committee approval was taken before the start of study. Written and informed consent of the patients was obtained from all participants before enrolment into the study. 160 patients were included in the study on the basis of following criteria:

Inclusion criteria
- Age more than 18 years.
- Patients who gave consent for the study.
- Diagnosed as sepsis:
 1. Temperature > 38 °C or < 36 °C
 2. Pulse above 90 beats/min
 3. Tachypnoea with rate > 20/min or PaCO₂ < 32 mm Hg
 4. Total leucocyte count (TLC) > 12000/cmm, < 4000/cmm or > 10% immature neutrophils ‘band’
 5. Evidence of organ failure.

Exclusion criteria
- Those who did not give consent for study.
- Pregnancy.
- Patients with malignancy.
- Patients with any underlying comorbid illness.

The focus of infection was identified, appropriate laboratory investigations – complete blood counts, CRP, lactate, and PCT were performed. This data was obtained and entered in excel worksheet. Statistical tests were used to find significant correlation and predict mortality. T-test was used to find statistical significance and sensitivity and specificity was calculated. A true positive was patient who survived with qSOFA of 1, or a patient who expired with qSOFA of 2-3, PCT > 10 ng/mL, lactate > 4 mmol/L, CRP > 50 mg/L.

Results
The present study comprised of 160 patients suffering from sepsis, admitted in the ICU. Out of 160 subjects, 98 (61.25%) were males and 62 (38.75%) were females. Mean age of the study subjects was 54.91 ± 13.58 years (Table 3, Figure 1).

Out of 160 subjects, 5 (3.125%) were in 18-30 years age group, 19 (11.875%) were in 31-40 years age group, 31 (19.375) were in 41-50 years age group, 47 (29.375) were in 51-60 years age group, 39 (24.375) were in 61-70 years age group, 18 (11.25%) were in 71-80 years age group, and 1 (0.625%) was in 81-90 years age group. Mean age of the

<table>
<thead>
<tr>
<th>Table 1. SOFA score</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
</tr>
<tr>
<td>Respiratory PaO2/FiO2</td>
</tr>
<tr>
<td>Coagulation Platelets (x10³/uL)</td>
</tr>
<tr>
<td>Liver Bilirubin (mg/dL)</td>
</tr>
<tr>
<td>Cardiovacular system</td>
</tr>
<tr>
<td>CNS Glasgow Coma Scale (GCS)</td>
</tr>
<tr>
<td>Renal Creatinine (mg/dL) or urine output (mL/d)</td>
</tr>
</tbody>
</table>

Dose in ug/kg/min for at least 1 hour.

2 | J Res Clin Med, 2023, 11: 21
study subjects was 55 ± 25.5 years (Table 4, Figure 2).

Out of the 160 study participants, the most common site of infection was pulmonary in 29.375%, followed by urinary in 26.25%, and then intra-abdominal in 18.125%. Blood stream infections were seen in 12.5% and CNS infections in 9.375%. Least involved sites were soft tissue in 3.125% and osteoarticular in 1.25% (Table 5, Figure 3).

Mean CRP [mg/L] was 9 ± 1.41, mean PCT [ng/mL] was 1.6 ± 0.56, mean lactate [mmol/L] was 2.1 ± 1.97 among the study subjects (Table 6).

In this study, specificity (%) of qSOFA + biomarkers (serum lactate, CRP, PCT) was 98.9%, that was more than sensitivity of qSOFA score alone (i.e., 40.62%). However, the sensitivity (%) of qSOFA was 45.31% that was almost similar to the specificity of qSOFA + biomarkers (i.e., 46.8%). Positive predictive value and negative predictive value was also higher in the qSOFA + biomarker group (Table 7, Figure 4).

Discussion

Sepsis is a serious illness with many complications. Its pathophysiology involves elements connected to both the host and the infecting pathogen. Sepsis has been characterized as an infection with at least two of the four SIRS criteria and has been featured as an inflammatory excess for more than 20 years. The current application of this criterion, however, might not be adequate to detect sepsis in patients. According to updated international definitions known as sepsis-3, septic shock is a subset of sepsis in which basic irregularities in the circulatory and cellular metabolism are sufficient to significantly increase mortality. Sepsis is defined as a life-threatening organ dysfunction brought on by a dysregulated host response to infection.

According to the clinical recommendations upheld by sepsis-3, patients with proven infections should have a SOFA score greater than or equal to two in order to be diagnosed with sepsis. In order to calculate SOFA, it is necessary to categorize patients as having sepsis before available laboratory test results can be used. To address this need, the sepsis-3 introduced the quick SOFA or qSOFA, a new easily and cheap approach to measure bedside clinical score. For each of the clinical variables—respiratory rate>22 breaths per minute, GCS<15, and systolic blood pressure<100 mm Hg—the qSOFA score

Table 2. qSOFA score

<table>
<thead>
<tr>
<th>System</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS</td>
<td>1</td>
</tr>
<tr>
<td>Respiratory</td>
<td>1</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3. Gender and age distribution among the study subjects

<table>
<thead>
<tr>
<th>Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, No. (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>98 (61.25)</td>
</tr>
<tr>
<td>Female</td>
<td>62 (38.75)</td>
</tr>
<tr>
<td>Total</td>
<td>160 (100)</td>
</tr>
<tr>
<td>Age (y), Mean ± SD</td>
<td>54.91 ± 13.58</td>
</tr>
</tbody>
</table>

Table 4. Site of infection among the study population

- **Pulmonary**: 47
- **Urinary**: 42
- **Abdominal**: 29
- **Soft Tissue**: 5
- **Blood Stream**: 15
- **CNS**: 2

Table 5. Gender distribution among the study subjects

- **Male**: 98 (61.25)
- **Female**: 62 (38.75)
- **Total**: 160 (100)

Table 6. Age distribution among the study subjects

<table>
<thead>
<tr>
<th>Age Group</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-30</td>
<td>5</td>
</tr>
<tr>
<td>31-40</td>
<td>19</td>
</tr>
<tr>
<td>41-50</td>
<td>31</td>
</tr>
<tr>
<td>51-60</td>
<td>47</td>
</tr>
<tr>
<td>61-70</td>
<td>39</td>
</tr>
<tr>
<td>71-80</td>
<td>18</td>
</tr>
<tr>
<td>81-90</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 7. Diagnostic efficacy of qSOFA vs. qSOFA + biomarkers regarding screening for mortality

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Positive Predictive Value (%)</th>
<th>Negative Predictive Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-SOFA</td>
<td>40.6</td>
<td>98.9</td>
<td>33.7</td>
<td>52.7</td>
</tr>
<tr>
<td>Q-SOFA + Biomarkers</td>
<td>52.7</td>
<td>73.6</td>
<td>56.7</td>
<td>73.6</td>
</tr>
</tbody>
</table>
is given, ranging from 0 to 3.7

Depending on the patient’s baseline level of risk, the initial and extensive retrospective study that compared patients hospitalised with infection suspicion and a SOFA score of 2 found that those with a SOFA > 2 had a two- to five-fold higher risk of in-hospital mortality than those with a SOFA < 2. When compared to SOFA > 2, the in-hospital mortality rate for patients in the ICU increased by three to 11 times. Additionally, the study demonstrated that qSOFA > 2 was associated with in-hospital mortality but was unable to foretell patient mortality in the ICU.7 Sepsis-3 advises using the qSOFA outside the ICU as an early score to launch investigation for organ failure and to guide appropriate clinical care because it appears to be less aggressive than SOFA in the ICU.17 Due to conflicting literature, the prospective observational study was conducted in the Department of General Medicine, in a tertiary care centre in Jaipur among 160 patients admitted in ICU that were diagnosed with sepsis. The current study aimed to evaluate and compare the performance of qSOFA with biomarkers usually used in sepsis and to predict mortality. Out of 160 subjects, 98 were males and 62 were females. Most common site of infection was pulmonary in 29.375%, followed by urinary in 26.25% and then intra-abdominal in 18.125%. Blood stream infections were seen in 12.5% and CNS infections in 9.375%. Least involved sites were soft tissue in 3.125% and osteoarticular in 1.25%. Similarly, de Freitas Garbero et al reported that the most prevalent sites of infection were respiratory (51.63%), urinary (24.46%), and abdominal (10.33%).18 Song et al revealed that the most common site of infection was the respiratory system (n = 102; 63.8%), followed by

<table>
<thead>
<tr>
<th>Site of infection</th>
<th>No. of patients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary Infection</td>
<td>47</td>
<td>29.375</td>
</tr>
<tr>
<td>Urinary Infection</td>
<td>42</td>
<td>26.25</td>
</tr>
<tr>
<td>Intra-abdominal Infection</td>
<td>29</td>
<td>18.125</td>
</tr>
<tr>
<td>Soft Tissue Infection</td>
<td>5</td>
<td>3.125</td>
</tr>
<tr>
<td>Blood Stream Infection</td>
<td>20</td>
<td>12.5</td>
</tr>
<tr>
<td>CNS Infection</td>
<td>15</td>
<td>9.375</td>
</tr>
<tr>
<td>Osteoarticular Infection</td>
<td>2</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Table 5. Site of infection among the study population

Table 6. Biomarkers among the study subjects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>qSOFA Mean</th>
<th>qSOFA + Biomarkers Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procalcitonin [ng/mL]</td>
<td>1.6</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>CRP [mg/L]</td>
<td>9.0</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>Lactate [mmol/L]</td>
<td>2.1</td>
<td>1.97</td>
<td></td>
</tr>
</tbody>
</table>

SD, standard deviation.

Table 7. Diagnostic efficacy of qSOFA and qSOFA + biomarkers regarding screening for mortality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>qSOFA Value</th>
<th>qSOFA + Biomarkers Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (%)</td>
<td>45.31</td>
<td>46.8</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>40.62</td>
<td>98.9</td>
</tr>
<tr>
<td>Positive Predictive Value (%)</td>
<td>33.7</td>
<td>96.77</td>
</tr>
<tr>
<td>Negative Predictive Value (%)</td>
<td>52.7</td>
<td>73.6</td>
</tr>
</tbody>
</table>

When compared to SOFA > 2, the in-hospital mortality rate for patients in the ICU increased by three to 11 times. Additionally, the study demonstrated that qSOFA > 2 was associated with in-hospital mortality but was unable to foretell patient mortality in the ICU.7 Sepsis-3 advises using the qSOFA outside the ICU as an early score to launch investigation for organ failure and to guide appropriate clinical care because it appears to be less aggressive than SOFA in the ICU.17

In our study, out of 160 subjects, 60% survived and 40% expired. De Freitas Garbero et al found that overall sample mortality was 51.63%, which was approximately similar to our study.18

In our study mean serum lactate, CRP, and PCT were suggestively more in expired subjects in comparison to survivors. Lactate is the most common and valued biomarker for estimation of mortality in sepsis. However, according to two more investigations, the biomarker lactate alone only had a mediocre ability to predict 28-day death.20,21 In sepsis, PCT also exhibited a modest predictive value, although the individual worth of the biomarkers was low. While this is going on, numerous research has looked into the prognostic utility of mixed biomarkers in predicting mortality due to the drawbacks of the single marker approach. The combination biomarker strategy had a stronger prognostic value than the single marker technique, which is in line with the findings of the current investigation.20,21

In this study, specificity (%) of qSOFA + biomarkers (serum lactate, CRP, PCT) was 98.9%, that was more than sensitivity of qSOFA score alone i.e., 40.62%. Although sensitivity (%) of qSOFA was 45.31% that was almost similar to the specificity of qSOFA + biomarkers i.e., 46.8%. Positive and negative predictive values were also higher in the qSOFA + biomarker group. Our findings matched those of Anami et al24 and Rosa et al,25 who reported similar findings in acute care units in Brazil. Greater SOFA scores have been linked to greater in-hospital mortality rates, both in the ICU setting and in emergency rooms, according to the literature.
the deadline for mortality analysis, several studies that assessed the sensitivity of the admission score for the same outcome came to the same conclusions. Rodriguez et al. found a sensitivity of 64.4% within 72 hours of hospitalisation; Tusgul et al. found a sensitivity of 68% for mortality within 48 hours; and Hwang et al. found a sensitivity of 39% within 28 days of admission, demonstrating the brittleness and ineffectiveness of its use for an early recognition of critically ill patients. There have been questions raised concerning the qSOFA score’s limited sensitivity when used as a sepsis screening tool, as was the case in our study. In a study, de Freitas Garbero et al. discovered that the sensitivity for death was 93.7% and that the relative risk of death associated with the admission of a positive SOFA was 5.17 (95% CI: 2.11-12.87). A positive qSOFA at admission was associated with a relative risk of mortality of 1.83 (95% CI: 1.39-2.44) and a sensitivity of 56.8% for death.

Conclusion

The specificity, positive predictive value and negative predictive value of combined qSOFA score and biomarker i.e., lactate, CRP, PCT was more than that of qSOFA score alone. So, the combination biomarker method including CRP, PCT, and lactate showed higher performance in predicting 28-day death among the sepsis patients. This method’s predictive value outperformed that of the qSOFA score on its own. Biomarkers can thereby improve the qSOFA score for predicting mortality.

Acknowledgments

The authors appreciate the patients for granting an informed consent for the study.

Author’s Contribution

Conceptualization: Pallaavi Goel.
Data curation: Pallaavi Goel.

Study Highlights

What is current knowledge?
- As far as we know, there is no superior biomarker or score for prediction of mortality in sepsis patients. This study aimed at a combined approach including biomarkers and Q-SOFA score for better prognostication.

What is new here?
- The combined biomarker approach using CRP, PCT and lactate depicted a better performance in predicting 28- day mortality among the patients diagnosed with sepsis. The prognostic value of this approach was superior to that of the Q-SOFA score alone. Therefore, biomarkers can be an enhancement to the Q-SOFA score for foreseeing mortality.

Formal analysis: Puneet Rijhwani.
Investigation: Srishti S. Jain.
Methodology: Puneet Rijhwani.
Project administration: Puneet Rijhwani.
Resources: Srishti S. Jain.
Supervision: Puneet Rijhwani.
Validation: Pallaavi Goel.
Visualization: Pallaavi Goel.
Writing–original draft: Pallaavi Goel.
Writing–review & editing: Pallaavi Goel.

Competing Interests

The authors declare no conflicts of interest concerning the authorship and/or publication of this article.

Ethical Approval

This study was approved by the Ethics Committee of Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, Rajasthan, India (Ethics No. MGMCH/IEC/PR/2021/355). Consent was explained and obtained from all the subjects.

Funding

The authors received no financial support for the research and/or authorship of this article.

References

11. Mikkelsen ME, Militades AN, Gaisies DF, Goyal M, Fuchs BD, Shah CV, et al. Serum lactate is associated with...

